AD=A097 362 CALIFORNIA INSY OF TECH PASADENA ANTENNA LAB F/6 18/6
THE DEVELOPMENT AND APPLICATION OF NOVEL METHODS FOR THE SOLUTI—ETC(U)
FEB 81 C H PAPAS AFOSR=77=3451
UNCLASSIFIED AFOSR-TR=81-0336




AFOLR-TR- 81-0336 | . D - ’

VRl

CALIFORNIA INSTITUTE OF TECHNOLOGY

ANTENNA LABORATORY

Tae  Devezoppinr Hw Atwesman o Aok
Y /2222 Sop Ty Jocuriom o A~ P

T LD s ¥ S

o FINAL SCIENTIFIC REPORT
6 Grant AFOSR-77-3451

¢
SN
—

;;.‘ by
C. H. Papas

February 1981

81 4 6 000

Approved for puhlic release; - {
distributionunlimiteds 'y

oit FILE CoPY




~

I S

s

UNCLASS LIt D
SECURITY QETST W *TION OF THIS OAGE (Whai Date Entorer

READ INSTRUCTIONS
BEFORE CCOMPI FT'NG FORM

2. GOVY ACCESGION NO.| 3.

D ACTI 63—

PECI® FNT' S CATALOG NUMBER

— su— o

THE DEVELOPMENT AND APPLICATIOA OF NOVEL METHODS
FOR THE SOLUFION OF LWP SHIELDING PhOBLlMS

—

S. TVFE OF REPCRT & PERIOD COVERED

1/—

/ I Ijndl fLPpﬂl

s.Peasonmbsoﬂ‘,ﬁ:iﬂﬂa«wuaEn

7. AUTHOR(sS)

Charles H)Pupas

15

8 C9N1RACT OR GRANT NUMBER(s) M
/ AFOSR<77-3451

9. PER7ORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM S EMENT. PROJECT, TASK
. . . AREA A RK UNIT NUMBERS
Department of Electrical Enginecering —
California Institute of Technology 61102F 23 i/%3
Pasadena, CA 91125 :

11. CONTROLLING OFFIGE NAME AND ADDRESS
AFOSR/NP
Bolling AFB
Wash DC 20332

12 qum' DATE

14. MQONITORING AGENCY NAME & ADDRESS(I! dlllaunl from Caluznulnﬂ Office)

C/ 74 ':/2‘ \\1\ Z r-/ ;‘

m———

15. SECURITY CLASS. fof this report)

unclassificd

15a. DECLASSIFICATION. DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public rclease;

distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, il diiferent {rom Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

20. ABSTRACT (Continue on revarse side If necessary and ldentify by block number)

was performed through the support of AFOSR.
EMP shielding theory and deal with a. the transmi
through small apertures, b.
chiral media, c. the steady state and transient ¢
through slabs, and d. the pondermotive forces and
electromagnetic waves. ol

/
\ .

" - The purpose of this report is to summarize the olectromagnetic res
The problems worked on pertain to
ssion of clectromapgnetic waves
the propagation of electromagnetic waves through

search that

lectromagnetic courling
torques produced by

DD ,2x'5, 1473

EDITION OF ' NOV {5 IS OBSOLETE

UNCLASSTFTED O !

/’ B! "‘/ 5
v

SECURITY CLASSIFICATION OF 7’NIS pAGE (When Data Enlondl

:f"‘“""‘ Bt Sanheb i T. - - . T
ey

e

e s . . -
o R L T SN PR . e

- ) g L eSS e
J/",\’ ~.}~ - u».'f"r >, «:‘WA'-_“ﬂ:s. S T -

m?*w DAL

PP

R

Rt
e g
%3

e T

ks .

g




Low.

A

W iy,

.
b one ad vy sl et e L.

Final Scientific Report
submitted by

C. H. Papas

California Institute of Technology

Pasadena, California

A Final Report to U. S. Air Force Office of Scientific Research
Summarizing Research Performed Under

Grant AFOSR-77-3451

February 1981

ALR BURCE OFRLOE OF

NOTICH oF TECMITTAL 10 Rg

iyt oo+ on roviewed and i3
eyrprov ) e TAV ACR luu-12 (7b).

Disteli o0 o0 o TR NI TYIN
A, D. beo. o
Teernlcal inforuntion orficer

k-

-

PP
"
N

[/

SCUZNTIFIC RESEARCH (AFSC)

e

¥y




o e ——— e b .

Introduction

It is the purpose of this report to summarize the electromagnetic
research we have performed through the kind support of the AFQSR. The problems
we have worked on pertain to EMP shielding theory and deal with
a) the transmission of electromagnetic waves through small
apertures,
b) the propagation of electromagnetic waves through chiral
media,
c) the steady state and transient electromagnetic coupling

through slabs, and

]
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d) the pondermotive forces and torques produced by electromagnetic
waves.
In what follows we describe the problems we investigated and the results
we obtained. The details of our work were circulated among the cognizant officers
of the Weapons Laboratory, Kirtland Air Force Base, New Mexico and then published
in the open literature. A full discussion of our calculations can be found in

our published papers, photocopies of which are attached to this report.
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Small Apertures

The question of how much of the electromagnetic energy that exists on
one side of a wall can leak to the other side through a small opening in the
wall is, by virtue of its pratical importance, a canonical problem in EMP
shielding theory.

For an opening that is circular, the answer is known from the celebrated
works of Rayleigh, Bethe, Bouwkamp, Meixner, and Andrejewski. However, for
a non-circular opening it appears impossible to solve the problem exactly,
unless the opening has a shape that is simple enough to permit a separation
of the variables and a scalarization of the field. This means that for most
openings of practica} interest an exact solution can not be found and one must
handle the probiem by a method of approximation.

One can formulate the problem so that upper and lower bounds on the true
(exact) solution and not the true solution itself need be found. Such a formu-
lation can be based on Levine and Schwinger's discovery that when the aperture
(of any shape) is electrically small there exists a. variational principle for
the upper bound and a variational principle for the lower bound. This varia-
tional approach can yield accurate results but in general does not lend itself
to easy calculation.

In our work we discovered a simpler method of sandwiching the true solution
between upper and lower bounds, namely, the method of symmetrization which has
yielded important results in geometry. We developed the method in the direction
of electromagnetics and applied it to our aperture problem. One of our principal
results is given by the simple formula

< 68e)°

277 (A/A")

for the transmission through an aperture of area A and perimeter P. Here T is

the transmission coefficient and A is the wavelength.




From this formula we see that when an aperture of given area is
symmetrized the aperture's perimeter decreases and the maximum possible
transmission decreases as the shape of the aperture approaches that of a
circle. For example, the maximum possible transmission decreases as the shape
of the aperture is changed from that of an equilateral triangle to that of a
square and finally to that of a circle.

For a full disc'-sion of the method of symmetrization and its application
to EMP shielding the reader is invited to read: D. L. Jaggard and C. H. Papas:
"On the Application of Symmetrizaition to the Transmission of Electromagnetic
Waves Through Small Convex Apertures of Arbitrary Shape", Applied Physics 15,
21-25 (1978).

Chiral Media

Chirality is a purely geometric notion which refers to the lack of
symmetry of an object. By definition, an object is chiral if it cannot be
brought into congruence with its mirror image by translation and rotation. An
object that is not chiral is said to be achiral. Some chiral objects occur
naturally in two versions one being the chiral object and the otker being its
mirror image. Such objects are said to be enantiomorphs of each other.

A chiral object has the property of handedness; it must be either left-
handed or right-handed. The handedness of helices was demonstrated by
W. H. Pickering. His experimental results showed that a collection of randomly
oriented left-handed helices would rotate the plane of polarization of a linearly
polarized microwave one way whereas a collection of right-handed helices would
rotate the plane of polarization the opposite way.

As a generalization of Pickering's results, our research led us to the
following conjecture: Any medium composed of randomly oriented equivalent i
chiral objects will rotate the plane of polarization one way, say, to the left, l
while a medium composed of the enantiomorphs of these objects will rotate the

plane of polarization the opposite way, i.e. to the right. By examining the




wire helix and the wire braid as chiral objects, we obtained results which
support this conjecture. Moreover, we showed that the pondermotive forces on
the helix and the braid tend to reduce their chirality.

The practical applicability of chirality to the measurement of EMP was
studied and several experiments based on the concept of chirality were designed.

For further details please read:

0. L. Jaggard, A. R. Mickelson, and C. H. Papas, "On Electromagnetic Waves in
Chiral Media", Applied Physics 18, 211-216 (1979).
Slab Coupling

We studied the problem of transmission of steady-state and transient
electromagnetic waves through a slab. An analytical solution was obtained for
the case of a linear hemogeneous, isotropic, highly conducting, infinite slab
excited by collinear electric or magnetic dipoles.

We found that the transmitted components of the field are given as the
product (steady-state case) or the convolution (transient case) of the corre-
sponding incident field components and a two-term factor. In the frequency
domain the first term of this factor is exactly the transmission coefficient of
a plane wave normally incident on the slab. The second term of this factor
brings into play the finite distance between the transmitting and receiving
antennas and becomes significant only when this distance is of the order of, or
smaller than, the free-space wavelength (steady-state case) or the spatial wave-
length of the incident pulse (transient case). Accordingly, we showed that it
is possible to obtain plane wave excitation results even when the sources and
the receivers are located at finite distances.

We derived the conditions under which measurements made with source and
receiver at finite distances are equivalent to the same measurements made with
plane wave excitation.

This work has been applied to the laboratory testing of EMP slab coupling.




For further details we refer the reader to:

G. Franceschetti and C. H. Papas, "Steady State and Transient Electromagnetic
Coupling Through Slabs", IEEE Trans. vol.AP-27, No. 5, September 1979.

Pondermotive Forces 1

It is well known that an electromagnetic wave exerts forces and (possibly) !
torques on charges and currents and that the mathematical description of these f
mechanical actions is given by the Lorentz force equation, which connects elec-

o tromagnetic and mechanical phenomena. If an electromagnetic wave interacts with,
say, a metal body, charges and currents are induced, and hence the body becomes
subject to local forces and torques. When a spatial summation is made, the total
time-dependent (body) force and (body) torque acting on the object are obtained.
[t is usually believed that these forces and torques are "small" and hence
negligible from the viewpoint of engineering application. However, this is not
always so. As a matter of fact, a strong interest in this area is now emerging.

Electromagentic pulses (EMP) produced by nuclear explosion in the upper
atmosphere is a case of recent interest. Also satellite applications have
attracted considerable attention, where the (relatively) small mass of the object
and the cumulative nature of the mechanical actions (translation or rotation) can

produce long-range macroscopic effects. Mechanical effects can be used, for

example, to steer the satellite by radiating suitably polarized electromagnetic
fields from the satellite. And even key operations, as deploying antennas, can
be performed, in principle, by injecting transient currents into the structures.
There are cases in which the movement of a metal object in an electromagnetic
field can produce additional mechanical stresses. Ffor instance, the propeliers
of a helicopter, which may be roughly modeled as rotating dipoles, can be further
stressed when exposed to an incident electromagnetic field. Clearly related is
the problem of the electromagnetic gun.

Accordingly, we examined a number of very simple cases of interaction between

metal objects and electromagnetic fields, and computed the resulting mechanical
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forces and torques. As the metal object, we considered the simplest one -- the
tuned electric dipole -- in several configurations: stationary, translational,
rotational, receiving, transmitting, where the electric dipole was isolated or
coupled with a magnetic dipole as a turnstile antenna or a chiral antenna. We
computed the body forcé and torque acting on the dipole and its time average,
for the case of an incident, or a transmitted, harmonic electromagnetic field.
As a general result, the forces are always proportional to the Poynting vector
(divided by the velocity of light) times an “equivalent area", which is four
times larger than the usual effective area -- 3x2/4n -- of the (tuned) dipole.
This clearly implies that the mechanical action depends on the power scattered
by the dipole. Similarly, the torque is proportional to the Poynting vector
(divided by the angular frequency of the wave) times the same equivalent area.
The existence of the torque, however, is not dependent only on the symmetry
properties of the scattering object or on the polarization of the incident
wave. We examined cases in which the incident field -- circularly polarized --
carries an angular momentum and yet exerts no torque on the dipole. Conversely,
we examined cases in which the dipole -- a simple short wire -- radiates as a
scattered field a linearly polarized wave (in the far-field) and has torques
exerted on it. The full analysis of a rigorous boundary value problem -- a
metal sphere in an incident field -- showed that the transient force has not
always the same sense as the incident radiation; in other words, the sphere is
alternately pushed and pulled in the direction of the incident Poynting vector.
The large variety of effects we discovered in this "case" analysis seems to
indicate that this is an underdeveloped field of very interesting research, and |
a number of general theorems could probably be discovered, thus bringing to

a better understanding of a wrongly neglected field.

For a full discussion of our work on this subject please see:




G. Franceschetti and C. H. Papas, "Mechanical Forces and Torques Associated

With Electromagnetic Waves", Applied Physics 23, 153-161 (1980).
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Abstract. The transmission of an electromagnetic wave through a small aperture in a
perfectly conducting screen is examined from the viewpoint of symmetrization.

PACS: 02. 41

The question of how much of the electromagnetic
energy that exists on one side of a wall can leak to the
other side through a small opening in the wall has
become. by virtue of its practical importance, a canoni-
cal problem in the theory of EMP (electromagnetic
pulse) interactions [1].

As is well known, the earliest calculation of the
transmission of an electromagnetic wave through a
small circular aperture in a plane screen of perfect
conductivity and zero thickness was performed by Lord
Rayleigh. Using potential theory. he calculated the
transmitted field of a plane harmonic wave normally
incident on an electrically small circular aperture [2].
Years later Bethe derived expressions for the polariza-
bilities and effective dipole moments of small circular
apertures. His results give the transmitted far field for
any angle of incidence but not the transmitted near field
[3]. Most recently Bouwkamp [4]). Meixner and
Andrejewski [S]. and Andrejewski [6] found an exact
solution for both the near and far transmitted fields of a
plane wave normally incident on a circular aperture.
Aperture problems can. at least in principle, be solved
numerically, but they cannot be soived analytically
unless the shape of the aperture happens to be simple
enough to permit a separation of the variables and a
scalarization of the electromagnetic field. However.
from this it should not be inferred that if the aperture
problem cannot be solved analytically. a numerical
method is the only way to obtain a solution. Actually. as
a preferable alternative. one can reformulate the pro-
blem so that upper and lower bounds on the true
solution and not the true solution itself would have to

be sought. Such a reformulation can be based on Levine
and Schwinger’s result that when the aperture is
electrically small there is a variational principle for the
upper bound and another variational principle for the
lower bound [7.8]). However. this variational ap-
proach, which was used by Fikhmanas and Fridberg to
find bounds on the electric and magnetic polarizabi-
lities of electrically small apertures [9], does not lend
itself to very easy calculation. Accordingly. it is of some
interest to try a simpler method of sandwiching the true
solution between upper and lower bounds.

In this paper we shall examine how symmetrization.
which has yielded interesting results in geometry and
mathematical physics [10]. may be used to establish
two-sided bounds on the electric and magnetic polari-
zabilities of differently shaped convex apertures and
thereby estimate their transmission properties in a
simple economical manner.

1. Symmetrization

Of the several kinds of symmetrization that have been
invented we shall restrict our attention to the sym-
metrization of a plane figure with respect to a straight
line. To symmetrize a plane figure with respect to a
straight line L, we suppose the figure to consist of line
segments that are parallel to each other and per-
pendicular to L (see Fig. 1). We then shift each line
segment along its own line until the line segment is
bisected by L. The shifted line segments compose the
symmetrized figure. For example. a semicircle of radius
R, when symmetrized with respect to its bounding

0340-3793 78 00150021 $01.00




2 D. L. Jaggard and C. H. Papa«

SYMMETRIZATION

)

1
{
i ® AREA UNCHANGED

L. PERMETER NEVER INCREASES

Fig. 1. Example of symmetrization of a plane figure with respect toa
hine L. The semi-circle of radius R is symmetrized with respect to s
bounding diameter to produce an ellipse with semi-axes R and R,2.
The ellipse. when symmetrized. becomes a circle of radius R/2. The
area of each figure remains constant but the perimeter decreases with
each symmetrization

diameter. changes into an ellipse with semiaxes R and
R 2. A further symmetrization can transform the ellipse
into a circle of radius R.2. Symmetrization leaves the
figure's area A unchanged and decreases, or, more
accurately. never increases its perimeter P. For the case
shown in Fig. 1. the area is always nR*?2 and the
perimeter varies from (2+n)R for the semicircle to
2' *nR for the circle.

As an instructive example. we apply the principle of
symmetrization to the calculation of capacitance C. Itis
known that the symmetrization of a plane conducting
plate decreases (1.e.. never increases) the electrostatic
capacity of the plate [10]. A plane figure symmetrized
infinitely many times becomes a circle and. con-
sequently. of all conducting plates of a given area the
circular plate has the minimum capacity. Accordingly.

CczC,. (1)

where C denotes the electrostatic capacitance of a plane
conducting plate and C,, denotes the electrostatic
capacitance of the circular plate of radius r,,. that has
been obtained by completely symmetrizing the original
plate. This places a lower bound on C. To obtain an
upper bound. we invoke the conjecture that of all plates
with a given perimeter. the circular plate has the
maximum capacitance [10]. Thus we find

Con2C. 2)
where C_, 1s the electrostatic capacitance of a circular
plate of radius r,,. whose perimeter is equal to that of

out*

the perimeter of the oniginal plate. From (1) and (2) it
follows that

C.2C=2C,,. K
Since we have

ro=(Amk? (4
Fow=P2m 5)

and the electrostatic capacitance of a circular plate
(disk) in MKS units is given by

C=8¢a. ]

where a is the radius of the disk and ¢, is the dielectric
constant of free space. upon replacing e by r_and r_,
we obtain from (3)-(6} that the capacitance C of a plate
of area 4 and perimeter P is delimited by

-

(Am)' *<C/8e, EP2n. (

|

Here ¢, =(36m)"! x 10~ ° farads per meter.

Both Maxwell [11] and Ravleigh [12] made unproven
statements concerning bounds on the capactance of
plates. which agree with (7). Moreover. the capacitance
of an elliptic plate of eccentricity e. as given by

Conpse’
=(An) (1 €)' 42K e*) ——p (4 1) P~ 64,

(81
where K(e?) is the complete elliptic integral of the first
kind [12]. clearly satisfies the left side of (7). To show
that it also satisfies the right side we only need to recall
that for an ellipse

Pe(llpse
=204:nF PE(@*)(1—e?) 7 (4 1) 2l 4+ 3e% 64,
(9

8¢,

2n

where E(e?) is the complete elliptic integral of the
second kind.

By virtue of the apparent validity of {7) for the
capacitance of plates of arbitrary size and shape we are
led to believe that other quantities of physical interest
may be similarly sandwiched between bounds involving
only the purely geometric parameters 4 and P.

2. Polarizabilities and Transmission Coefficients
of Small Apertures

Let us now consider the transmission of electromag-
netic energy through an electrically small aperture
which is located in a plane screen of perfect con-
ductivity and zero thickness. Since the aperture is small,
the fields on the shadow side of the screen appear 10
emanate from dipoles located in the aperture. These
electric and magnetic dipoles. having moments p and m.

—rrs




-
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radiate in free space and are linearly related to the
incident traveling wave through the vector electric
polarizability with components a, and the dyadic
magnetic polarizability with components g, That is,

P =t E™ (i=1,2.3) (10)
—m=p, S BH™  (i=12) (1n
=1

where p,=4n x 10”7 henries per meter. The incident
electric and magnetic fields are plane waves of the form
E™ explitk -r—wt)] and H"™ exp[i(k -r — wt)]. where r
is the position vector. k is the wave vector and w is the
frequency. We emphasize here that “electricaily small”
means that AL <1 where L i1s the maximum linear
dimension of the aperture.

For a circular aperture of radius a the polarizabilities
are given by the «ample expressions

1:””[‘:%“36:'3 (i=1.2.3) (12)
f)*"":lj‘la“(s,»/ (l,[=1.2) (13.
where

. 1 oi=j

0O =

Y {O i*].

The values 1. 2. and 3 correspond respectively to the
directions é,..¢_.and é,. The aperture plane is defined by
the umit vectors é, and ¢_ and the normal (pointing
toward the shadow side) 1s defined by é,=¢ xé_ (see
Fig 2). The polarizabilities are defined here for incident
traveling waves and for dipoles radiating in free space.
For short circuit incident fields and for dipoles radiat-
ing 1n the presence of a conducting wall. all values of the
polarizabilities should be divided by the numeric 4.

L Foogrozation

Fig 2 Unitvectors ¢ and ¢ bie in the aperture plaue, and é,. For -
polanzanon H'™ 15 always parallel to the aperture plane and makes
angie s with respecttoe For o polanzauon E'™ s always paraliel to
the aperture plane and makes angle y with respect to ¢,

For elliptic apertures with semi-axes a and b along ¢,
and é,, respectively, we have

ellipse 4n abZ
ellip =?_E(6’2) ia (14)
4n ab®e’
kil ; 5
fieitipse 3 (1-e*)[K(e*)- Ee?)] (15)
N B 4 2,2
n ab-e o

3 Ee) - —eZ)K(eZ)‘S‘Z‘

where e =(1 —b?a*)! 2 is the eccentricity of the ellipse
and K(e?) and E(e?) are elliptic integrals of the frst and
second kind {13].

The transmission coefficient t 1s defined as the rato of
the total far-field power transmutted through the
aperture divided by the total power incident on the
aperture. For the case where the principal axes of
magnetic polarizability dyadic correspond to ¢ and

¢ we find
azzsinz"( )
3 "

.4
. s .4 {cos?yy]
+([3;,sm-z+ﬁ§:c05'1l( ]')| (7
/)

12n4

1 L .
for ( , polarization [14]. Here ; is the angie of

incidence. i.e. the angle between k and ¢,. and y 1s the
angle between H'™ and é_ for parallel polarization and
is the angle between E'™ and é for perpendicular
polarization (see Fig. 2).

3. Bounds on Polarizabilities
and Transmission Coefficient

Imitating the procedure we followed to establish
bounds on the capacitance of plates. we now construct
bounds on the mean magnetic polarizability £, of a
convex aperture by replacing the radius a. which
appears In expression (13) for the polarizability of a
circular aperture. by r (4) and r,, (5) of the aperture
Thus we are led to the conjecture
l6 4*° 16, P\*

31o) SBas T(z_n) . (18)
where by definition 8, =(8,, +f,,) 2.

To test the plausibility of {18) we examine several
special cases. For the elliptic aperture of small eccen-
tricity (¢ < 1), {18) becomes

16,4\ 16,4312 9 .
~ g it Z 9
o) sps 3(n) (1+64(’ ) (191
(154 and (16} yield
16,4\ KIS N
= — | - —_— _)
B, 3(7:) ‘.l+3:e). 1200

e as
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and thus we clearly see that (18) is satisfied in the case of
mildly eccentric ellipses. It can also be shown that (18}
holds true for elliptic apertures of arbitrary eccentricity
(0se<1) and for other convex apertures such as the
rectangular and the rhombical aperture [14,15]. The
fact that these test cases are in complete agreement with
(18) leads us to believe that the assertion (18) is valid for
all convex apertures.

Accepting the general validity of (18) and recalling that
symmetrization reduces P without changing 4 we
conclude that of all convex apertures of fixed area A the
circular aperture possesses the smallest mean magnetic
polarizability.

The electric polarizability contributes to transmission
through small apertures only when the incident wave is
obliquely incident and polarized parallel to the plane of
incidence. To construct bounds for the electric polariza-
bility we note that. for a circular aperture of radius a
and area 4. (12) can be written as

zCITCk 8 A-

, 7 =% (21

Then by replacing the radius a of this expression by

ro i 4rand rg,, (51 we arrne at the conjecture

16 4° g 477

— — 1, s-(—) . (22)
In P =S 3in

To test the plausibilitv of{22) we again consider the case
of a mildly eccentric ellipse (e<1). In this Case (22)
becomes

R 43¢ 3 BA)“

b (1~ 4 eiipse « © [ 77 -
3‘n’ -l sass( .
and from (14) we have

¥ 3 o
ellipse __
2§ ﬂ—)h-agy (24)

Obviously. expression (24) is equal to the lower bound
in (23 Furthermore. with the aid of (14) it can be
verified that the lower bound in (22) is precisely the
value of the electric polarizability of ellipses of arbitrary
eccentricity [9.15]. Also we note that the electrical
polarizabilities of rectangular and rhombical apertures
satisfy (22) [14,15]).

Assuming the vahdity of (22) and invoking sym-
metrization. we find that of all convex apertures of fixed
area the circular aperture possesses the largest electric
poianzability

The bounds that have been proposed for the electric
(22) and mean magnetic (18) polarizabilities can be used
to obtain bounds on the transmission coefficient (i7). In
some modern applications the quantity of interest is the
upper bound for the case where the incident wave 1s

directed and polarized to maximize the transmission
through the given aperture. Clearly, maximum possible
transmission through a given aperture occurs when the
incident wave is parallel polarized and is made to fall on
the aperture at grazing incidence. To find the upper
bound for maximum possiblc transmission we use (22)
and note that r, » Thus

Oﬂl_
. 64/A\> 64/ P\°
aisin?y g ?(;) < —(5;) . {25)
Moreover, in view of (18) we can write
1024( P )"

B3 sin’y+ B3 cos?y S —— 126}

9

2r,
Substituting (25) and (26) into (17) we thus obtain the
following expression for the maximum possible trans-
mission through a small aperture of area 4 and
perimeter P

bRy )
< 68(P 27

234 2

where ~4=2nk 1s the wavelength of the inaident
radiation.

Since symmetrization reduces P and keeps 4 un-
changed we see from (27) that the maximum possible
transmission decreases as the aperture 1s symmetrized.
That 1s. the maximum possible transmission decreases
as the shape of the aperture approaches that of a circle

[16].

Conclusions

We suggest bounds for the polarizabilities of a small
convex aperture of arbitrary shape and given area and
thus find plausible upper and lower bounds on 1ts
transmission coefficient. Symmetrizing the aperture we
see that the aperture’s perimeter decreases and accord-
ingly the maximum possible transmission decreases as
the shape of the aperture approaches that of a circle.
For example. the maximum possible transmission de-
creases as the shape of the aperture is changed from that
of an equilaterai triangie to that of a square and finally
to that of a circle.

The bounds are simple to evaluats from a knowledge of
the aperture’s area and perimeter and therein lies the
desirability and economy of this method.

It appears that this method of estimation can be
generalized to handle other boundary-value probiems
and thus provide information as to how their solutions
are modified when there is a change of shape.
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Abstract. We analvze the propagation of electromagnetic waves through chiral media. ie..
through composite media consisting of macroscopic chiral objects randomly embedded in a
dselectric. The peculiar effects that such media have on the polarization properties of the
waves are placed in evidence. To demonstrate the physical basis of these effects. a specific
example. chosen for its analytical simphcity. 1s worked out from first principles.

PACS: 02. 4]

Chirality is quite common. It occurs not only in nature
but also in works of art and architecture as well as in
manufactured articles [1.2]. In nature we find chirality
on a molar scale in, for example. snails. flowers. and
vines. and on a molecular scale in such substances as
grape sugar and fruit sugar. Moreover. chirahty 1s an
operational feature of such manufactured articles as
screws, springs. and golf clubs.

Since chirality begets handedness and handedness
begets optical activity. it 15 not surpnising that the
interaction between an electromagnetic wave and a
collection of randomly oriented chiral objects can be
such as to rotate the plane of polarization of the wave
to the right or to the left depending on the handedness
of the objects.

The concept of chirality is not new. nor has it been 1g-
nored. Since the early part of the nineteenth century. it
has plaved an increasingly important role in chemistry
[3-5]. optics [6.7]). and elementary particle physics
[8]. In 1811 Arago [9] discovered that crystals of
quartz rotate the plane of polarization of plane polar-
ized light and hence are optically active. Shortly
thereafter. circa 1815. Biot [10] discovered that this
optical activity is not restricted to crystalline solids but
appears as well in other media such as oil of turpentine
and aqueous solutions of tartaric acid. These discoy-
enes led to the fundamental problem of determining
the basic cause of optical activity. In 1848 Louis
Pasteur [3] solved the problem by postulating that the

* Presently with the Department of Eiectrical Engineening. Un-
versity of Utah Salt Lake Gy Utah 84112 USA

optical activity of a medium 1s caused by the chirahty
of its molecules. Thus. Pasteur introduced geometry
into chemistry and originated the branch of chemistry
we now call stereochemistry. More recently. in 1920
and 1922, Lindman [11. 12] devised a macroscopic
(molar) model for the phenomenon by using mi-
crowaves instead « light. and wire spirals instead of
chiral molecules. The validity of the model was verified
a few vears later by Pickering [13].

To obtain a better understanding of chirality and assay
its future role 1n electrical design. we shall examine n
the following pages the interaction between electro-
magnetic waves and chiral objects. In particular. we
shall study the case of a composite medium consisting
of randomly onented chiral conductors embedded n
a dielectric.

1. Two Conjectures on Chiral Objects

Chirality is a purely geometric notion which refers to
the lack of symmetry of an object. By definition. an
object is chiral if it cannot be brought into congruence
with its mirror image by translauon and rotation. An
object that is not chiral is said to be achiral Thus all
objects are either chiral or achiral. Some chiral objects
occur naturally in two versions related to each other as
a chiral object and its mirror image. Objects so related
are said to be enantiomorphs of each other.

A chirai object has the property of handedness : 1t must
be either left-handed or right-handed. If a chiral object
18 left-tright-)handed. 1ts enantiomorph 1s night-ileft-)

0330-3792 79 0018 0211 SO1.20
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Fig 1 A sketch showing chiral obyects ileft column) and ther
enantiomorphs (nght column). From top to bottom are shown a
helix. a Mobius stnp. an irregular tetrahedron and a glove

handed. For example, if the chiral object 1s a left-
(right-thanded helix, its enantiomorph is a right-(left-)
handed helix.

The handedness of helices was made clear by
Lindman’s and Pickering's experimental results which
showed that a collection of randomly oriented left-
handed helices would rotate the piane of polarization
of a linearly polarized microwave one way but that a
collecton of randomly oriented right-handed helices
would rotate the plane of polarizatiori the opposite
way.

Assuming that this relation between the handedness of
the helices and the sense of rotation of the microwave
1s not peculiar only to helices but is a property of all
chiral objects and their enantiomorphs, we are led to
the following conjecture: Any medium composed of
randomly oriented equivalent (simply-connected) chi-
ral objects will rotate the plane of polarization one
way. say. to the left, while a medium composed of the
enantiomorphs of these objects will rotate the plane of
polarization the opposite way, i.¢.. to the right.

In Fig. 1 we see common examples of chiral objects: a
helix. a Mobuus strip. an irregular tetrahedron, and a

o— 2q-—e

re- 20 =i

LEFT-HANDED  RIGHT-HANDED

Fig 2 ldealized short helices used in calculations The plane of the
loop 1s perpendicular to the axis of the straight portion of the wire

giove. On one side of the figure 1s the chiral object and
on the other is 1ts enantiomorph.

A type of (multiply-connected) chiral object that has
recently attracted considerable attention 1s the wire
braid. The theory of braids 1s a developing branch of
topology [14. 15] and a study of how an electromag-
netic wave interacts with a braid may help in the
development of the theory.

Examining the forces that are exerted on certain sumple
chiral configurations of wire when an electromagnetic
wave falls on them. we conjecture that the forces are
such as to reduce the chirality of the configurations.
This is true for the wire helix, for the three-stranded
braid. and appears to be true in general. This tendency
of the forces makes the object more nearly sym-
metncal.

2. The Short Helix

To demonstrate the plausibility of the above conjec-
tures, we examine the scattering of electromagnetic
waves from a metallic chiral object. For computational
simplicity, the chiral object is chosen to be an electn-
cally small perfect conductor having the form of a
short right- or left-handed helix, as shown in Fig. 2
The calculation is simplified by referning the incident
and scattered waves to the scattening plane defined by
the incident and scattered wave vectors k' =ké, and
k = ké,, respectively (Fig. 3). The incident plane wave is
composed of the electnc field

E =(a,¢, +a_e’é e h

and the corresponding magnetic field

B =é xE ¢, 2
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where ¢ is the free-space speed of light. ¢. a_and é are
real numbers with al +a’=1. and : is the distance
along é(=¢,xé ) The circumflexed quantities are
unit vectors. the primes denote quantities associated
with the incident wave. and the subscripts identify
quantities parallel or perpendicular to the scattering
plane. The harmonic ume dependence exp(—iwt)
(where w=ck) has been suppressed.

The scattered electric field E,(¢#) depends on the
observation angle @ defined by the relation
cosi=¢,-¢,. and on the induced electric and magnetic
dipole moments p and m. It 1s apparent (Fig. 2) that
both dipole moments are directed paraliel to the axis
of the helix This axis hes along the unit vector ¢,
whose onentation angles are x and f§ (Fig. 3).

The inaident electric field induces currents n the
straight portion of the chiral object. and by contmnuity
these currents must also flow 1n the circular poruion of
the object. The current in the straight portion contni-
butes to the electric dipole moment of the object and
the current 1n the circular portion contributes to its
magnetic dipole moment In a complementary manner.
the mcadent magneuc field induces currents 1n the
circular portion and by conunuity in the straight
portions. Thus. aiso the magnetic field contributes to
the electric and magnetic dipole moments of the object
In a first-order (Born) approximation we find from the
heuristic argument above that the electric and mag-
netic dipole moments of the object are given by

p=iulrs0¢, Edtag, cié, Bile, 13
m= '[—,_.,(‘([" B (RS YERTON M) 4

Here. as 1n the remainder of the report. the upper
tlower) sign corresponds 10 the right-handed (left-
handed) helix of Fig 2 The permutnvity. the per-
meability. and the impedance of free space are denoted
by i i =, 1) 7) The electrnic and magnen self-
susceptibilities. 4, and y,.. are real positive quantities as
are the cross-suscepubihties 4, and 4, Clearly. 7,
and s, are the usual electnic and magnetic susceptibil-
iies dassoctdted with electnicaliv small metalhe bodies
The cross-susceptibilities 4, and 4, are. 1n a certain
sense. @ measure of chirahty or handedness since for
achiral bodies 4, = £, — 0

Using known approximauons. the self-susceptibilities
can be wrnitten

7, =207, t5
Jm=tnat v 1 161
where € and [ oare. respectively. the capaciance and
the inductance of the body [16]. and 2/ and 2u

represent the length and the width of the short helin
thig 21 It can be shown that the cross-susceptibilities

A
en

& SCATTERED
INCIDENT
WAVE

L
PV a Ve

L3 e,

>

CHIRAL
OBUECT

Fig 3 Veclors indicating the directions and angles of incident and
scatiered waves and the orientation angles of the chiral object The
axes are oriented in such a manner that the unit vectors ¢

¢. ¢, and ¢, are in the scattering plane defined by k and &

The unit vectors ¢ and ¢ are perpendicular to this plane

are given by

Sem = sl 2l na*k) (7
S = 7400k 20 (K}
From physical considerations (1e. freedom from ohm-
1c losses and conservation of energyvy. 1t appears that
Lem and s are equal and real. 1e.

Lom ™= hme = 1. - 9
where j, 1s their real common value

It follows from (5»49) that the constraint

LC=¢i (1l

s placed upon the inductance and capacitance of the
helix and the common value ; for the cross-
susceptibilities is related to the inductance and capaci-
tance by

7. = 2na*m oL = na’morC i

From the knowiedge of p and m the scattered field can
be calculated by the formula

1o

E ith= (e, xpr=¢,-¢, ~m] (ad

ni v

To gam further insight into the problem. 11 s useful to
find the constitutive relations of a medium composed
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of randomly oriented equivalent chiral objects. These
consitutive relations must have the form [17]

P=.E+;.B (13)
M=:.E+.B. (14)

where P and M are, respectively, the polarization and
magnetization of the medium.

Energy conservation dictates that for a lossless
medium

Fme = Vem 15
where the asterisk denotes complex conjugate. If y_,
and ;_, not only satisfy (15) but also are purely
imaginary quantities, then the constitutive relations
(13) and (14) are those of an optically active medium
[17)

To find the consitutive parameters for a medium
composed of N non-interacting short helices per unit
volume, we compare (3) and (4), averaged over orien-
tation angles x and B, with (13) and (14). Thus we
obtain

Te=NEgL4 (16)
Tm= = Ny du, (17
Yem = TN 140 (18)
Vme = FiN Lo /dN (19)

Since y,,, and yx,, are real and equal, we see from (18)
and (19) that y,, and 7,,, are purely imaginary and
sausfy (15). Hence the medium composed of short
helices exhibits optical activity.

3. Collection of Short Helices

To find the scattered field of a collection of randomly
oriented identical helices we can use one of two
approaches. One approach uses (12) averaged over
orientation angles x and £ the other approach uses
(131 and (14) directly. These two approaches give the
same result. Here we use the former of the two
approaches.

Let us suppose that we have a collection of N non-
interacting helices per unit volume occupying a small
volume AV, When the incident wave is circularly
polarized. the scattering cross-sections per unit solid
angle © are found to be

dal) (kINAVY? ) 2
0 yepney ™ VT 1o En £ 201+ c050)
(20)

when the incident wave is right circularly polarized
(RCP} and only the right circularly polarized part of

the scattered field is considered.

dal6) KNAVY a4 cos 8
(do )LC,_LC,’W"" Am* 2L 0s6)

(20

when the incident wave is left circularly polarized
(LCP) and only the left circularly polarized part of the
scattered field is considered, and

(daw)) - (da(f)))
dQ RCP-LCP dQ LCP-RCP
(kAN aV)?

= — v 12(] — 2 2
WIZ!+/.MI(] cos 0) (22)

when the incident wave is RCP or LCP and the
scattered field is LCP or RCP. respectively.

From these expressions we see that for scattering in the
forward direction (6=0) right (left) circular polar-
ization produces a right (left) circularly polarized scat-
tered field whereas in the backward direction (6=n)
right (left) circular polarization produces a left (right)
circularly polarized scattered field.

Next. we consider a wave normally incident on an
electrically thin slab of width 4 which contains N
randomly oriented helices per unit volume. Using
again the assumption that the helices are non-
interacting, we find from averaging (12) that the trans-
mitted field is given by

E,~|aé, +a_ ¢’

iNkd - ,
+ '—8— {[a"(z, ~xw) Fia_e*2.3¢,
, o, -
+i[ a2y —ia_ ey, — xa)]é_}le™
|
and the reflected field by

| PR M (Xe + Xm)ayé, + a_eé Je (24

8
where the above expressions are correct to the first
order in (Nkdy) (here x stands for x,. x.. Of x.).

From (23) it can be shown that the plane of polar-
ization is rotated through the angle ¢ where

é=tand = F Nkdy /4 25)

for waves which pass through the chiral medium. Here
¢ is measured from é, towards é_. Expression (29) is
again correct to the first order in (Nkdy). This equation
expresses a genera! result which holds for any medium
composed of objects characterized by parallel electric
and magnetic dipole moments with non-zero cross-
susceptibilities. For the short helices pictured in Fig. 2
we can find a lower bound on the capacitance C by the

-
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expression [ 18]

C2Zeyldn)? 331, 2 (26)

where 1,(=2nb?{/ + na)) is the volume occupied by the
short wire helix and b is the wire radius. This in-
equality. with the aid of (11) and (25). yields the
following lower bound for the magnitude of the ro-
tation angle

o~ tan Pl =47 *n? AN(kdX2kma 3K3V,) Y. 2N

This bound is proportional to the product of the third
root of the volume }, of the wire helix and the
cylindrical volume containing the helix (= 2irna*).
From (23) the eccentricity of the transmitted polar-
1zation ellipse differs from that of the incidént polar-
ization ellipse by a factor of order (Nkdy)*. However,
thts transmitted field is correct only to order (Nkdy).
Therefore. the change in the eccentricity of the polar-
1ization ellipse cannot be determined exactly from this
model. To the first order in (Nkdy) the eccentricity is
unchanged.

The reflected wave (24) to order (Nkdy) shows zero
rotauion for the plane of polarization and zero change
in the eccentricity for the polarization ellipse.
Therefore. for reflected waves, the slab of chiral me-
dium behaves as an ordinary dielectric slab. These
polarization characteristics are due to the fact that in
the backscatter direction. in the first order. the effects
of chirahity are not present in the scattered field [see
{204 (21). and (23)]

From Noether's theorem [19] 1t can be shown that the
angular momentum of the electromagnetic field 1s
conserved for a medium described by (13)-419). This
tmphies that no torque 1s exerted on a slab of chiral
medium. It 15 not surprising that there 1s no torque
since the electrical properties of the slab are invariant
under rotations of the slab about ¢, With a knowledge
of the state of polarization of the incadent wave.
conservation of field angular momentum further 1im-
phies that the state of polanization of the reflected wave
can be determined from the state of polanization of the
transmitted wave, and vice versa. Some experimental

[+

U

'
.

Fig. 4 A schemauc of a short helix (chirali evolving into a
straight wire {achiral) under the influence of forces produced by
induced currents

Fig 5 Under the action of forces produced by the induced currents a
long helix (shown at left) 1s gradually shortened inte more closely
spaced loops of increased radius (shown at nighty

results indicate that there is a change of eccentricity
between the incident and scattered fields due 10 the
chiral medium [11. 12].

From the above considerations. the conjecture that a
collection of chiral objects will rotate the plane of
polarization becomes plausible.

4. Reduction of Chirality

Assuming that the helix in Fig 4 1s made of flexible
wire. we see that the currents tha: are induced tend to
deform the helix. The current along the circular por-
tion tends to open up the circle and make a planar
figure out of the onginal helix. Moreover. interaction
with the current along the straight portion of the heln
tends to elongate the planar figure into a straight ine
Since planar figures are achiral. we thus see that the
helix evolves into a planar figire and that the chirahty
of the configuration is reduced

Suppose now that we have a flexible helix of mam
turns (Fig. S1 In this case the induced current forces
adjacent turns together and at the same time makes
each turn expand into a turn of larger radius Thus the
onginal helix becomes a shortened heliv of larger
radhius Since the shortened hehv s less chiral than the
onginal helix. we see that here agam the induced
currents tend 1o reduce the chirality of the con
figuration
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P‘ pZ P,
L, f
UZ
O'r !
)

G D

0 Q, 0,

Fig 6 Bus bars L, and L, connected by three strands of the braid
defined by 0,0, ‘0,

Another type of chiral object 18 a braid of non-
intersecting wires. Following Artin’s theory of braids
[14] we may describe a braid by projecting 1t on a
plane and expressing the projected pattern as the
product of terms, each of which 1s a, or ¢, '. Here o,
denotes that the strand in position 1 crosses in front of
the strand in position i+ 1 and a, ' denotes that the
latter crosses in front of the former

Let us consider the three-stranded braid 6.0, '0,
shown in Fig. 6. The bus bars L, and L, are connected
by three flexable wires at the freely movable but
ordered terminals P,. P,. P, and Q,. Q.. Q. Clearly.
the braid and bus bars form a chiral object. An
incident wave will induce currents in the braid and bus
bars and these currents will deform the configuration.
viz.. will make 1t more nearly planar. and thus reduce
its charahty

From these and other special cases we are led to the
conjecture that the electrodynamic forces are such as
to reduce or mimmuze chirahty

Conclusions

We direct attention to the interaction of electromag-
netic fields with macroscopic chiral objects. By
examining the wire helix and the wire braid as chiral
objects. we obtain results which conform to the conjec-

ture that composite media composed of macroscopic
chiral objects are optically active. and to the conjecture
that electrodynamic forces tend to reduce chirality.
These considerations are expected to play a role in the
development of diagnostic tools for remote sensing, in
the design of electromagnetic shields and in the pre-
diction of structural deformations.
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Steady State and Transient Electromagnetic Coupling Through Slabs

GIORGIO FRANCESCHETTI. senior MEmBER . IEEE. AND CHARLES H. PAPAS. MEMBER . IEEE

Abstract—The problem of electromagnetic transmission through a
slab where transmitting and receiving antennas are at finite distances
trom the slab is considered. The mathematical formulation of the
problem is quite general. A detailed solution is p d for the
case of a highly conducting slab exposed to sinusoidal and transient
excitations. A discussion is given of the conditions under which meas-
urements with the source and receiver at finite distances are equivalent
10 ihe same measurements with plane wave excitation.

I. INTRODUCTION

NE OF THE simplest conceivable ways for determing the

electromagnetic properties of materials is to measure the
electromagnetic field transmitted through a siab of the material
under test. The corresponding mathematical model consists
of an infinite slab with transmitting and receiving antennas
placed on opposite sides of the slab. The model provides a
reasonably good approximation to the real situation of a slab
of finite extent when the distance between transmitting and
receiving points is small compared to the transverse slab
dimensions.

Measurements can be made in the sinusoidal or the tran-
sient regme. For instance, MIL standards for evaluating the
shielding effectiveness of materials {1] require that transmis-
sion measurements be made in the steady state at prescribed
frequencies and then in a pulsed regime using wire and loop
antennas placed at prescribed distances from the slab of shield-
ing material. Although these standards are useful for relanve
compansons, a fundamental question remains unanswered:
does the measurement depend oniv on the electromagnetic
properties of the slab (and on 1ts thickness). or does it depend
also on antenna type and orientation, antenna distance, and
(for transient measurements) on transmitted waveform?

A crude but simple method for studying (or, at least, having
an estimate of) the field coupled to the inside of an enclosure
15 to consider the transmission through a slab, provided the en-
closure 1s large in terms of the incident wavelength. The slab
may be perforated. inhomogeneous. or described by stochastic
parameters. the last case being relevant to near-millimeter prop-
agation through aerosols used for camouflage tactics. Inelectro-
magnetic pulse (EMP) experiments it is customary 1o simulate
the EMP plane wave signal by using rather sophisticated an-
tennas and guiding devices [2], [3]. An attractive alternative
to this approach can result from an understanding and ex-
ploration of the role played by localized sources at finite dis-
tances from the test object.
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The objectives of this paper are to reconsider the problem
of steady-state and transient coupling through a slab with
transmitting and receiving antennas located at finite distances
from the slab; to cast the problem in an elegant form: and to
show that, at least in the case of a highly conductive slab, sim-
ple analytical solutions to the problem can be obtained. An
important result of the paper is the determination of antenna
positions and (in the transient regime) of incident waveforms
that will yield a transmitted field practically the same as that
produced by plane wave excitation.

Transmission through highly conductive slabs 1s certainly
not a new problem. For plane wave steady-state excitation,
transmission line techniques can easily be applied [4]}. For
pulsed plane wave excitations, the solution is also available [§]
The situation is much less satisfactory for the case we want to
study. It is not the aim of this paper to provide a full biblio-
graphy on this subject (for a more complete bibliography see
[6]1). We note only that the first attempt to solve this problem
was made in 1936 [7]) by accommodating the classical results
of Maxwell on eddy currents and thin shields to the case of
two coaxial loops separated by a plane conducting sheet. Early
studies on antenna couphing through plane shields were based
on low-frequency [8}. [9]) or quasi-static [10] approxima-
tions, were mainly relative to loop excitation [8])-{10]. and
required numerical computation [8]~[12] of integral expres-
sions for the transmitted field. Although the validity of the
simple transmission line theory [4] for antennas at fimite dis-
tances from the shield, or shields of finite extent, has been
questioned [ 13], it appears that all expressions derived 1n the
referenced literature resemble Schelkunoff's formulas [ 14]

Due to the symmetry of the problem it can easiy be sur-
mised that plane wave expansion techniques provide a power-
ful tool of analysis for an arbitrary type of excitation o! an
infinite slab. These techniques have been recently applied [ 14].
[15] to the case of electric or magnetic dipole excitation in
parallel (dipoles paralle! to the slab) or coaxial (dipoles normal
to the slab) configuration, by computing the transmitted field
through the use of fast Founer numencal programs In this
paper we shall use the same approach. However. we will show
that, although the Fourier transformation of the fields 1s a
logical intermediate step of the analysis, it 1s not needed in the
final formulation of the solution. Indeed, the solution can be
conveniently expressed in terms of a convolution integral,
wherein the presence of the slab is described by an appropriate
transfer function. Then, at least for antennas in coaxial con-
figuration. the convolution integral can be analytically evalu-
ated both in steady-state and transient regimes, and no numer-
ical work 1s necessary. Inspection of the solution allows us to
answer the original question about the influence of the finite
antenna separation on measurements. After all the mathemat-
ical machinery has been worked out and simple, physically
sound. understandable results are obtained, a discussion of the
final resuits 1s presented in Section V1.
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Fig. |. Geomeiry of problem.

II. CIRCUIT-LIKE ANAT VSIS OF ELECTROMAGNETIC
TRANSMISSION THROUGH A SLAB

With reference to Fig. 1. let us consider an infinite slab of
thickness s and characterized, in the frequency domain, by
permittivity € = €g€,, permeability u = uou,, and conducti-
vity 0 We want to compute the field Ef, H! transmitted at
: > 5 along the : axis when the incident field E*, Hi i.e., the
field produced by the sources when the siab is removed. 15
known at = = 0. For this purpose it is convenient to expand
the incident field in a plane wave set, since the interaction of
individual plane wave components with the slab can be con-
veniently taken into account,

Accordingly. let H,i(x, v, O), £,x, v. 0) be the = com-
ponents of the field incident on the slab surface, with an as-
sumed time dependence exp{jw!). The corresponding spectral
components h,f(u, v), e,'(u, v) are given, at z = 0, by

+- + o
hi(u, v) = / dx [ dy H,(x, y. 0)
(27’)2 —- —
+ exp (Jux + juy) 2.1
l -~ o + -
e,i(u, V)= / dx/ dy E;(x.y. 0)
(2712 J)_w -
« exp (jux + juy). (2.2)

At : = 5, 1e., at the output of the slab, the spectral com-
ponents Ji,'(u, v), ¢, f(u, v) will be linearly related to the inci-
dent components (2.1) and (2.2) in the case of a slab made of
a linear material. Hence,

Bt U) = ty(u. V)R, (4, V) (2.3)
e (1, V) = tg(u. V)e,'(u. v). (2.4)

The transfer coefficients ¢ty . tg can be easily computed for a
homogeneous isotropic siab by noting that the transverse
spectral components h,(u, v), ,(u, v) are related to the longi-
tudinal ones h,(u, v), ¢,(u, v} via the following relations:

wee,xx? T wh,ix(kx?)
! u? + 2

(2.5)

—wih,kx? T we,dx(kx?)
e =
t w2+ 02 (2.6)

wherein kK = uf + vp + w? and is the propagation vector re-
ferring to a Cartesian system of unit vectors %, ¥. ?. and the
upper (lower) signs refer to waves propagating in the positive
tnegative) direction of the z axis. Equations (2.5) and (2.6)
represent the total spectral field as a superposition of TE (¢, =
0) and TM (h, = 0) parts. With the medium being 1dentical at
both sides of the slab, 1t is then evident that 1y coincides with
the usual slab transmission coefficient for TE plane wave in-
cidence and, similarly, 1z is the same as the slab transmission
coefficient for TM plane wave incidence. Letting

w=\/x! —(u! ;5),

[+]
w, = [k2le, +— ju, — (u? +1?), 2.7
Jweg

w, JWEg Wy

YH = . YEET————— (2.8)
pw O + JWEpE, W
we have
4 exp (—/w,s)
Hu, vy = (2.9)
(1 +7)? l 1—v\? ,
— =] exp(—2jw,s
4y P (—21w,s)

wherein Yy may be taken equal to or Yg in order to obtain
ty or 1, respectively. and k = W\ €guo.

The spectral components h,, e, at any = > s are equal to
the corresponding values (2.3) and (2.4) at z = s uumes the
plane wave transfer function exp[—jw(z — 5)]. Accordingly,
the z component F,i(x, y, z) of the field transmitted at any
arbitrary abscissa z > 5 will be expressed in terms of the
double Fourier integral

Fulix,y.2)= / du / duv f,'(u, U)t(u, v)

* exp [—jw(z—s)] * exp (—jux —juvy) (2.10)

wherein f,' may be taken equal to h,’ or e, and, correspond-
ingly, the values of 14 or rg should be used.

On the other hand. the spectral representation of the =
components of the incident field (the slab is now removed) at
any abscissa - is obviously the following:

Fiix,y.2)= / du [ av [} (u. v) exp (—jwz2)

* exp (—jux — juy). (2.11)
Comparison of (2.10) and (2.11) shows that the transmitted
field can be computed as the double convolution of the
incident field and the double Fourier transform of r(u, v)
exp(yws), hence

] > -
Fx'(x« y )= —

' Vgt
ot ) dx /—- dy F,M(x.y.2)

Tx—x",y—y"

Ot b2 L
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Tix. y) = / du / dU t(u, Uy exp (jws)

*exp (—jux —Uy) (2.13)

In the words of system theory F! is identified with the output
of a linear system described by the unit response function
(2.13) and excited by the input £

We further note that relations similar to (2.12) exist be-
tween the transmitted and incident transverse components of
the field, as easily follows from (2.5) and (2.6). It is only ne-
cessary to decompose the incident field in its TE and TM parts
and then to apply superposition.

I{I. THE AZIMUTHALLY SYMMETRIC CASE

A case of particular interest is obtained when the incident
field does not depend on x and y separately but rather upon
the transverse coordinate p = /x4 + 3¢ For instance, if the
source 1s taken equal to an elementary electric or magnetic
dipole parallel to the = axis at P(0, 0, —d). then

jw X
Flx.p.2)=Fl(p.2)==—7[x2A+ V7 - A} - £
K

K2 3:2 k2 pdp 9dp
wherein
exp (—/n\/p§ +(d+ :)7)
Ap.z)=C (3.2)

VeT ¥ +2)"

is an electric or magnetic vector potential, the source intensity
being proportional to the constant C.

The ntegrals (2.12) and (2.13) can now be simplified by
using the change of coordinates:

x=pcos®. y=psing, u=fcosy, U=Esinvy.
(3.3)
Accordingly.

Tix, )

T(ﬁ)-‘-/ EdE 1(5) exp (VK2 — E25)
0

2n
/ exp [—jo& cos (y — ¢}] dy
(1]

27*[ EdEJo(pE)(E) exp (jVkZ — EEs),  (3.4)
0
and the field transmitted on the axis is given by

Fz"OVO.:)=/ pdp F,'(p.d +2)T(p)
V]

=/ EdE exp ()VkZ — E25)1(F)
0

. / pdp F,i(p. d+2)Jo(%p) (3.9)
1]

-

_,
-——-
5

Fig 2. Integration path in complex « plane.

wherein the order of integration has been reversed. Upon sub-
stitution of (3.1) in (3.5) the inner integral can be evaluated
by repeated integration by parts as follows:

/ o dp Fi(p. d + 2)Jo(pE)
0

Jo(p§) dp

_ W€ g2 /" p exp (—jxv/pT + (d +2)2)
o VT +(d+2)2

__wC P exp (—/VkT—E2(d + 2)]
T« VkET=g2 '

the last expression stemming from a known Fourier-Bessel
transform [16). Note that Vk2 - §2 = —/t2 — k2 for §2 >
k2 and that we have implicitly assumed k # 0 in this section.

The formal expression for the z component of the field
transmitted through the slab is now the following:

(3.6)

F, (0, 0_.:)=wa/ (1 —u?)r(u) exp (—jklu) du  (3.7)
r

wherein / = d — 5 + z, the integration path I is depicted in
Fig. 2, and the substitution k2 — £2 = k2,2 has been used.

IV. THE CASE OF AN ELECTRIC PLANE SHIELD-
STEADY-STATE EXCITATION

A case particularly interesting for applications is obtained
when u, = |, 0 ® weg€,, i.e., when a highly conducting non-
magnetic slab is used as a shielding screen. As already noted in
Section |, this is an important configuration in shielding theory
and practice, The solution to this problem js available in nu-
merical form [14], [15) for prescribed sinusoidal time varia-
tion and arbitrary spatial dependence for the fields, and in
analytical form [5] for prescribed plane wave excitation and
arbitrary time variation.

The case of a magnetic dipole excitation is considered first.
The expression for r(u) pertinent to this case is the {ollowing:

4um
ty(u) = Em
exp (—jvVa® + uéks)
1 - [u:u—]z exp (—2v/aé + uéks)
u+ ol ¥ ul : ‘

4.1)

o

TF YT S ez, S
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0+ jweg(€,— 1) /]
a? = - o & —_ (42)
jWE€g JWweég

It 1s noted that 14(u) exhibits no singularity (n the lower night
quadrant of the complex u plane, so that the integration path
[ can be freely deformed therein, e.g.. in the new path I (see
Fig. 2). When (4.1) 1s substituted in (3.7) 1t 1s noted that we
can neglect u? with respect to a2 provided the integrand is
negligible when u > la | Accordingly, when k/la |» | the in-
tegral (3.7), specified to the case at hand, becomes -

4 exp (—jaKs
H,10.0.1) = —jwCk ——-———(——)—

exp (—x!
a 1 —exp (—2jaxs) )

. / U(—jV2 + 3v + 1) exp (—xiv) du. (4.3)
3

and the origin of coordinates 1s now in correspondence to the
source. The integral is now straightforward to evaluate and can
be conveniently normalized to the value of the incident field
H,'(0,0,!). We have

1+ —+
H,'(0.0.I)_[i exp(—lax:):l wl o (ki)
)

H,'(0,0,/) a 1 —exp (—2j0xs

!
1+ —
Kl

= ro(a, ks} (k). (4.4)

It 1s noted th«t the first bracketed term to(a, ks) is just the
plane wave transmission coefficient under normal incidence
and appropriate to a highly conducting screen. The second
term {2{«x!) depends on the mutual distance / between trans-
mitting and recewving points and approaches | when «/ > 1.
Accordingly, 1t follows that a simple plane wave transmission
coefficient can be used for evaluating shielding effectiveness
provided that transmitting and receiving antennas are a few
wavelengths apart.

On the other hand, when «/issmall, Q,(x/) = 3/, and

H,'0,0.1) 3
—_— s (k) =
H,0.0.1) &l

exp (—jaxs—jn/4)38
[1—exp (—2axs)]V2!

L

(4.5)

wherein & 1s the skin depth of the screen. Note that (4.5) is
valid provided that §/! < 1, otherwise the assumptionxla i »
1 is no longer met.

The case of an electric dlpole excitation can be treated sim-
ilarly. We have

dauv/al + ul
(a%u + u + VaZ + u2)?

exp (—/vVa + uéus)

) | <a2u+u—\/a5+u5

2 .
—————————} exp(—-2veTtulxs
a’u+u+\/u!+u§> )

g (4.6)

tglu) =

We can now neglect u? with respect to a2 without serious lim.
itation in the validity of the results. The integral corresponding

to (4.3) 1s the foliowing:

exp (—/xiu)
E,%0,0. 1) = wCkrp(a. ks) « ——— du
1 u
+,/ u—/u)exp(—xlv)dvl 47)
0

which can be easily evaluated to yield

E.10.0.1) ( Vel
—_— = gl KS K
£/0.010) ° E
Qp(xl) = l + ki + (jxl)? exp (;x:)lcx(xl)-/sw)l
L+ —
x!

wherein the cosinus integral Ci(x) and sinus integral Si(x)
functions [ 17] do appear.

It 1s again noted that Slg(x/) = 1 when &/ ® 1, as casily
follows upon use of the asymtotic series expansions (l’l of
the functions Ci(x) and Si(x ), so that (4.8) reduces again to the
plane wave transmission coefficient rola, ks) provided that
transmitting and receiving antennas are a few wavelengths
apart On the contrary, when x/ 1s small, a proper series ex-
pansion [17] shows that Qgix/) = /xl/2‘and

E,40.0.0) i
—— = —yg{a. ks)
E,;N0.0.1) 2

exp (—jaxs + ym/4) 5
= xl)2 . 4.9)
1 — exp (~2jaxs) NEY

V THE CASE OF AN ELECTRIC PLANE SHIELD-
TRANSIENT EXCITATION.

We have shown in Section IV that the steady-state 2
components of the field transmitted through a highly conduc-
tive plane shield are given by

F 0. 0,7) = F,'(0. 0, )i1g(a. ks)SUKD). (5.1)

It is then evident that the z component of the transient trans-
mitted field can be obtained by time-convolving the transient
z components of the incident field with the inverse Founer
transforms of to(w) and QUw), let us say To(r) and (1),
Use of Laplace inversion tables | 18] shows that

2 exp (=n3n/r)

To(r) =2 RYE

(2n3n—1)

2 d exp (—nn/n)
T am

T e d
=4 [- — Sol(r (5.2
’\/:lzndl o(n) )

where T = €9/0 and is the relaxation time of the material of
the shield. and n = s2/(c2 1) and is the diffusion time through
the shield thickness.
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fig 3 Qualitative behavior of first series term of function Tot1)
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T 4 Qualtauve behavior of puised field ot ume duration T after
transmission through a hghly conductive siab

A qualitative behavior of the first term n = 1 of Tytr) 18
given :n Fig. 3 wherein S5, = 4 N/7/21em = So(2m) and 15
the maximum value of the function Sy(r) (see also Fig. 4).
where in S .4 e s the Neper's constant

The behavior of successive terms of the series (5.2 1s similar
to that depicted in Fig 3. The maxima occur at later imes and
their absolute values are smaller by the factor expl- 2 6(n% -
11] n% Accordingly. they can be safely neglected, and we can
take only the first term ot the series (£.2)

After some algebra Laplace inversion | 19] of the two func-
tons §2iw) leads 1o

I—exp(~1'T)

Quizy=ot) + Ligr) tS 3

N

Qetr) = 6(:;—; expt 'THlr)

o' T exp(—u)
- - — - du (84
4
o

where 8(r)and L¢1) are the Dirac and the umit step tunction.
respectively, T = //c and s the free-space transit time {rom the
transmitting to the receving antenna

Convolution of t5.2) with the dir) terms of (S 3Yand (5.4
just repraduce the function Thtr) Convolution with the other
terms may become significant onlv after a time of order 7
Accordingly . 1f the nadent field has a time duration small
compared with T.1e 1ts spatial length 1s small compared with
the in-between antennas distance /. then the tune dependence
of the transmitted field 1s ssimply given hy the time convolu-
tion of the incident signal and the functinn To(r) This trans-
mutted field 1s the same as would be obtained for the case of
plane wave excitation Accordinghy . the result 1s obtained that
the {inite distance between antennas plays no significant role
it the inaident wavefurm s sufficiently short in ime For an-
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stance, 1f the incident signal is a pulse of unit amplitude and
time duration T, then

..
o
>
°
|
RO

FU0.0Lty=4 [— —————F *<T (55
: n NI
n
exp | — —
. T t*
F,L0010L9)y=4 |- f|—————*
2 ) - =
n
exp | ———
___,"_T *>T 3
I — ! (2 0)
Vier—T

where 1* = 1 - (/;¢) and 1s the retarded time. A qualitative
sketch of (5.5) and (5.6) 15 gaven in Fig. 4 for T' > 2r;. When
T <€ 2n, then the transmitted field 1s just given by (3.2)
times T~

VI CONCLUSIONS AND PRACTICAL CONSIDERATIONS

We have considered the problem of the transmission of
steadv-state and transien! electromagnetic waves throuveh a
slab An analytica: solution has been obtained for the case of
a linear homogeneous sotropic highly conducting infinite
slab exuited by collinedr electric or magnetic dipoles. The
transmitted - components of the field are expressed as the
product tsteady-state cased or the convolution (transient case)
of the corresponding incident fieid components and & two-
term factor In the frequency domain the first term of this
factor (see (S 1has exactly the transmission coefficient of 4
plane wave normally incident on the slab. The second term
takes into account the fimite distance between the transmitting
and recewving antennas and becomes significant only when this
distance 1s of the order of, or sma..er than, the free-spuce
wavelength (steady-state case) or the spatial length of the inc-
dent pulse (transient case) It 1s therefore possible 1o obtain
plane wave excitation results even when sources tand receiwvers)
are located at fimite distances. For this all that 1s needed 1s the
proper chowce of distance between antennas

It 1S certainly true that these results have been obtained
under the conditions that the transmitting antenna 1s a dipole
oriented normal to the slab, that the transmitted field 1s com-
puted along the axial direction of the dipole, and that onlyv the
2 components of the field are used in the companson. How-
ever, we believe that our analysis has a more general validity
For instance, results of the collinear configuration can eastly
be extended to transmitted field points off the axis. We should
only substitute

;T T ————7
Jold\p2+ p2— 2pp cos @) e 1)

for Jolép)in (2 12) Then expansion [ 20] of the Bessel fun.-
tion t6 11 and integation 1n ¢ gives

Fp ) = w(‘x/ = u)ru)doinpy't — uE)
r

cexp(—niuy Ju t6 )
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which is the gencralization of (3.7) to the case p #* 0. Then
9F,%(p, 1)/dp = O for p =0, which implies that the results of our
analysis are certainly also valid in the neighborhood of the
axis. Furthermore, use of Maxwell's equations, with (6.2) as
the longitudinal field, shows that the same is true for trans-
verse fields. In this extension, however, the simplifying as-
sumptions used in the body of this paper should be checked
again. Should further study show that the above considera-
tions can be extended to more complicated geometries, all
simulation studies for shielding purposes might be worth
reconsidering.

Some few practical notes are now in order. Reterence is
made to a copper slab (0 = 5.8 X 107 S/m) of thickness s =
1 mm, sothat 7= 152X 10712 s and n = 70 us. Only the
plane wave transmissicn coefficient will be considered. For
incident pulses of unit amplitude and time duration 7' <€ q,
the peak of the transmitted field is equal to 2.7 X 10~7 I'/y,
therefore linearly decreasing with the bandwidth (~1/T) of
the signal. In the sinusoidal excitation case the attenuation due
to the mismatch 4/a | equals that due to the damping inside
the slab material exp( — la lks/s/2) at the frequency f = 0.72
MHz. At this frequency the transmitted field is equal to 11 X
10~12 times the incident one. At higher frequencies the
signal 1s decreasing exponentially with the square root of the
frequency.

For moderate antenna spacings it is noted that the transmit-
ted field can be computed using the plane wave transmission
coefficient only when the attenuation is very high. However,
this may not be the case if even small apertures exist in the
screen. Accordingly, we believe it is worthwhile to extend the
analysis presented in this paper to other canonical probilems,
which are amenable to the same analytical approach. Among
those, we list the problem of an infinite conductive screen
with a single hole and that of a conductive screen with a regu-
lar lattice of equal small apertures. The former problem can
take advantage of the solution of a plane wave diffraction by
apertures in conducting screens {21]-[23] and, eventually,
of symmetrization procedures [24]. The latter could make use
of the artifical dielectric theory [25] properly accommodated
to this single sheet problem.
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Abstract. Mechanical forces and torques associated with electromagnetic waves impinging
on several objects are computed. The incoming radiation can be linearly or circularly
polarized, thus carrying linear and angular momenta. The objects are matched dipoles in
several configurations and a metal sphere. Numerous interesting results are obtained.

PACS: 02.41

It is well known that an electromagnetic wave exerts
forces and (possibly) torques on charges and currents
and that the mathematical description of these
mechanical actions is given by the Lorentz force
equation, which connects electromagnetic and
mechanical phenomena. If an electromagnetic wave
interacts with, say, a metal body, charges and currents
are induced, and hence the body becomes subject to
local forces and torques. When a spatial summation is
made, the total time-dependent (body) force and
(body) torque acting on the object are obtained.

It is usually believed that these forces and torques are
“small” and hence negligible from the viewpoint of
engineering application. However, this is not always
so. As a matter of fact, a strong interest in this area is
now emerging. For instance, a book recently has
appeared [1] which gives a most complete review of
existing theoretical and experimental methods for de-
termining electromagnetic signals by means of their
associated mechanical effects. Electromagnetic pulses
(EMP) produced by nuclear explosion in the upper
atmosphere is another case of recent interest. Also
satellite applications have attracted considerable at-
tention, where the (relatively) small mass of the object
and the cumulative nature of the mechanical actions
(translation or rotation) can produce long-range mac-
roscopic effects. Mechanical effects can be used, for
example, to steer the satellite by radiating suitably
polarized electromagnetic fields from the satellite. And
even key operations, as deploying antennas, can be

* On leave of absence from University of Naples, ltaly

performed, in principle, by injecting transient currents
into the structures. There are cases in which the
movement of a metal object in an electromagnetic field
can produce additional mechanical stresses. For in-
stance, the propellers of a helicopter, which may be
roughly modeled as rotating dipoles, can be further
stressed when exposed to an incident electromagnetic
field.

Accordingly, we believe that it is useful to examine a
number of very simple cases of interaction between
metal objects and electromagnetic fields, and to com-
pute the resulting mechanical forces and torques. As
the metal object, we have considered the simpiest one -
the tuned electric dipole - in several configurations:
stationary, translational, rotational, receiving, trans-
mitting, where the electric dipole is isolated or coupled
with a magnetic dipole as a turnstile antenna or a
chiral antenna. We have computed the body force and
torque acting on the dipole and its time average, for
the case of an incident, or a transmitted. harmonic
electromagnetic field. As a general result, the forces are
always proportional to the Poynting vector (divided by
the velocity of light) times an “equivalent area”, which
is four times larger than the usual effective area -
34%/4n - of the (tuned) dipole. This clearly implies that
the mechanical action depends on the power scattered
by the dipole. Similarly, the torque is proportional to
the Poynting vector (divided by the angular frequency
of the wave) times the same equivalent area.

The existence of the torque, however, is not dependent
only on the symmetry properties of the scattering
object or on the polarization of the incident wave. We
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Fig 1. Receiving electric dipole excited by a monochromatic linearly
polanzed electromagnetic plane wave

have examined cases in which the incident field -
circularly polarized - carries an angular momentum
and yet exerts no torque on the dipole. Conversely, we
have examined cases in which the dipole - a simple
short wire - radiates as a scattered field a linearly
polarized wave (in the far-field) and has torques exert-
ed on it. The full analysis of a rigorous boundary
value problem - a metal sphere in an incident field —
shows that the transient force has not always the same
sense as the incident radiation; in other words, the
sphere is alternately pushed and pulied in the direction
of the incident Poynting vector.

The large variety of effects we discovered in this “case”
analysis seems to indicate that this is an underde-
veloped field of very interesting research, and a num-
ber of general theorems could probably be discovered,
thus bringing to a better understanding of a wrongly
neglected field.

1. Mechanical Forces and Torques Exerted
on a Receiving Dipole
by an Incident Electromagnetic Wave

1.1. Linearly Polarized Incident Field

We examine the case of an electric dipole of length
Al <€ 4, tuned on A, and excited by a normally incident
plane monochromatic electromagnetic wave of
angular frequency w and wavelength 4 (see Fig. 1). The
incident field is linearly polarized; and the electric
vector Ecoswt makes the angle a with the dipole
direction.

Due to the incident field, a current

= Ecosadl 0
= Ingar3a (

is excited along the dipole; and charges

Q= isin wt 2)
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of opposite sign appear at its end points. In (1) the
expression in the denominator is the radiation resis-
tance of the (tuned) dipole and { the free-space intrinsic
impedance.
The incident magnetic field, H. interacts with the
induced current, thus producing a force
2 312

F=plalx x H= +— S— cos’x cos’wt? 3

{c 2n
whose time average is given by

3A2
(F)= g—A coslas, A=—:

=1
—: S=iEH, (4)

where ¢ is the light velocity.
Accordingly, the force is given by the radiation pres-
sure S/c times the “effective area™ of the unloaded
dipole, which is four times larger than the area of a
matched dipole

Gi*  3i?
Ap= 3= =% (5)
In addition to the magnetic force, the incident electric
field E interacts with the induced charges. No resulting
force i1s produced from this interaction; however, a
torque

T=QEsinadlcos wtsinwtz

acts on the dipole. Its time average is given by

(T)=0. (6)
Accordingly, no time average torque is exerted on the
dipole.

The conclusion is that a linearly polarized electromag-
netic wave exerts a force on a receiving dipole tuned on
the frequency of the wave, where the force is pro-
portional to the incident power density and is directed
along the direction of propagation.

1.2. Circularly Polarized Incident Field

Let us now consider a circularly polarized plane
electromagnetic wave which can be conveniently de-
scribed in the frequency domain by the phasors:

£

E=E(x+iy); 7

(y—ix) M

incident on the (tuned) dipole. Phasors of currents and
charges induced on the dipole are the same as those
given by (1) and (2) with cosa=1 and with the time
variation suppressed.

The average force acting on the dipole is still that
produced by the interaction of the induced current
with the y-component of the magnetic field (the




x-component is ineffective); its time average value is
given by

S .

(I-‘)—ZCAz, S=EH. (8)
Note that now the time-average Poynting vector, i.e,,
the incident power density is doubled compared to the
linearly polarized case, and the average force is pro-
portional to one half of the total incident power.

A torque is produced due to the interaction of the
y~<component of the electric field and the induced
charges, hence

T=QiE4lz, Q= % o)

This torque has the same sense as the polarization ; its
time-average value is given by

(My=>4 (10)
2w

and therefore is proportional to a torque density - one
half of the power density divided by the angular
frequency of the wave - times the effective area of the
dipole.

The conclusion is that a circularly polarized elec-
tromagnetic wave exerts forces and torques on a
receiving tuned dipole, in the direction of propagation
and in the sense of polarization, respectively ; forces as
well as torques are proportional to one half of the
incident power density.

2. Mechanical Forces and Torques Associated
with a Transmitting Dipole

2.1. Lnearly Polarized Dipole

We examine the case of an electric dipole of moment p,
directed along the x-axis of a reference Cartesian
system, as depicted in Fig. 2. The electromagnetic fields
associated with the dipole are given, in the frequency
domain, by

_b. —2ix 2\ expl(ixr)
E, —esmﬂcosd)( ; +r’) yy
E =%cost o i_'f-l+-2 exp(ixr)
o = - c0sf cos ( i R i
p.  fix 1 z) explixr)
=< - = 1
E, esm¢(r F,-Hc e (11)
o . N exp(ixr)
H,=-iwp sm¢(1x ’) b

exp(ikr)

H,=—iwpcosBcos¢(ix—;) .
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Fig 2. Linearly polanzed transmitting dipole antenna

wherein. x=w/c and is the free space propagation
constant and reference is made to the spherical coor-
dinate system of the figure.

The (time average) force density transmitted by the
dipole across the surface r=const is given by [2]

> =LellEgl* +1E,|2 = |E,|*)F + L ul(lH 1 + |H ,* )

4  |nl2
—1_ K

Cein? 2
=Gt 2(1 —sin“fcos?¢)

4
inl 2
- ——sin‘fcos
xr? ¢

+#(1—5sin28cosz¢)yi. (12)

Expression (12) is invariant under the transformation
0—n—06, p—n~—¢. Therefore, the (time average) total
force transmitted across the half-sphere r=const, 20
is equal and opposite to the total force transmitted
across the other half-sphere r =const, z£0. The former
is given by

2z ®/2

(F)=%{ d¢ | dfr?sin6<f) 3
[} o

P 1 1 ).

=§T’(1—Ti-w)z. 13)
wherein P, is the total power transmitted by the
dipole. Note that the component of (F) parallel to the
plane z=0 is zero. Accordingly, the (time average)
total force transmitted across a half-sphere surface is
directed along z and changes sign at xr=1.The
intensity of this force is proportional to the power
radiated by the dipole in the half space >0, P,.2,
divided by the velocity of light.

Y
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The (ime average) torque density transmitted by the
dipole across the surface r=const is given by [3]

(ty= - 4rRe{cE Fx E®*+uH F x H*}

__ et 2R
e (4nr)?

. lésmecos¢sin¢+$c050cos¢sin¢)
1
'RC{I'#W}. “4)

The (time average) total torque (T) transmitted across
the half-sphere is equal to zero. Accordingly, a linearly
polanized electric dipole transmits no torque and only
forces. The dipole is in equilibrium with respect to the
transmtted forces.

2.2. Circularly Polarized Dipole

Let us now consider two orthogonal transmitting
electric dipoles such that the total dipole moment is
given, in the frequency domain, by

p=plx+iy). (15)

With reference to the spherical system of coordinates
of Fig. 2. the field components associated with the
dipole are given by

= gsine(cos¢+jsin ¢)(_ 2ix 2) explixr)

r r) 4nr

™

_P . i_x_ 1 2) explixr)
E,—ecose(cos¢+|sm¢)(r '3+x —
P . '.'f_i 2\ €xp(ixr)
E.-E( snn¢+|cos¢)(’ = +K)_—-41rr (16)
. Lo . _l exp(—ixr)
H, = —iwp(sin ¢ ~icos ¢) (lx r) i
exp(—ixr)

H,= —iwpcosf(cos ¢ +isin ¢) (ix-— 1)
r 4nr

The (time-average) force density transmitted by the

dipole across the surface r=const is now given by

x* |pl?

4
=43 wr 20y il
H=3 Py S 2(1 +cos?f) e sin?

1
+W(l+c0s’0—4sin19) 7. an

Also in this case, and due to the symmetry of (17), the
total (time average) force transmitted across the haif
sphere r=const, z20, is balanced by an equal and
opposite force transmitted across the complementary
balf sphere r=const, 250; and hence the dipole is at
rest. The total (time average) force transmitted for z 20

U Franceschetti and C. H. Papas
1s given by

P | 1 .
<F>=§[(1_W_W)ZA . (18)
Again, the total (time average) force transmitted is
along the z-direction and is proportional to one half of
the total transmitted power divided by the velocity of
light. Note that for the antenna under consideration
the radiation resistance is doubled compared to that of
the single dipole.

The (time average) torque density transmitted by the
dipole is given by

Ipi? sin82x? ( A
Y i
w=-42 T Re{llx%Jﬂ

. 1 -
— (|+ W) c059¢} . (19)

The total torque transmitted across the half-sphere
r=const, 220 is readily computed as

P
TH=:"z. 20
M e (20)
The torque transmitted across the complementary
half-sphere is the same. Accordingly, the dipole is not
in equilibrium as far as torques are concerned.

3. Mechanical Forces and Torques Associated
with a Moving Dipole

3.1. Translating Dipole

We examine the case of an electric (tuned) dipole,
excited by an electromagnetic plane wave, as depicted
in Fig. 1. We are taking the angle a to be zero for
convenience, and we assume the dipole to move witha
constant velocity v= —vZ along the negative z axis.

It is evident that the force acting on the dipole is given
by the same expression (4) with a =0, provided that the
Poynting vector S is computed in a reference frame
fixed to the dipole.

If E', H' are the electromagnetic fields in this frame, we
have

1
E =(E+vxuH)
Vi-# 1)
1
H'=(H—VX£E) N
y1-82

wherein § =v/c. Then, after a few computations, we get
the following expression for the Poynting vector in the
primed [rame (fixed to the dipole)

1+8
1-8°

§S'= 22)
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This, however, does not imply that the average force
exerted upon the dipole is increased by the scalar
factor appearing in (22) in comparison to the case of
the dipole at rest. As a matter of fact, the incident wave
in the primed reference frame has a Doppler shifted
frequency

1+8
—_ 23
1§ (23)
Accordingly, the effective area of the dipole - see (4) -
takes the new value
1-8
‘=A—

A 155 (24)
When the dipole is retuned on the new frequency, the
force acting upon it remains constant.

I=s

3.2. Rotating Dipole

We examine now the case of an electric (tuned) dipole,
excited by an clectromagnetic plane wave, as depicted
in Fig. 3. The dipole is rotating with constant angular
velocity  along the z-axis, so that the dipole makes
with respect to the x-axis an angle ¢ given by

¢= Q. (25)

We can compute the forces and torques acting on the
rotating dipole in the following manner. We transform
the pertinent results of Sect. 1 from the inertial labo-
ratory frame of Sect. 1 to the non-inertial rest frame of
the rotating dipole and then neglect manifestly small

correction terms. Usually the procedure of transform-

ing from inertial frames to non-inertial frames or vice
versa is a long calculation, but in the case of present
interest simplifying approximations can be introduced
and the procedure can accordingly be shortened. In
particular, we are interested in the components

E,=Ecos¢: E,=—Esing; H,=%:-cos¢ (26)

which, upon transformation to the rotating reference

frame, are given by [4]

L g He oy
l /l — ﬂz V 1 _ﬂz

wherein the parameter

B=%elc (28)

takes into account the relativistic correction. However,
when the fields are evaluated at the rotating elemen-
tary dipole, we have A4/-0, g—0 and f—0.
Accordingly, the force acting on the dipole is given by

E,=E,; E,

Ez
F==-Acos?¢s. (29)
{c

Fig 3. Receiving rotating electric dipole excited by a hnearly
polarized electromagnetic field

In order to consider the time average of (29), it should
be remarked that the fields are changing in time with
an angular frequency w and so the quantity to be
averaged is cos?wt cos? . If the average is made with
respect to the period 2n/w of the incident wave, then.
after some lengthy algebra, we get
sin 2n2

S w 2nQ

T— A 1+ 2Qt+ —
2L‘A ! 2n82 COS( M w)

w

(Fy=

2n

o)
(@/w)? 270\
~T=@or cos (2wt) cos (2{2: + —w—)

If Q/w<1, the term in the curly brackets is approxi-
mately equal to

1+4cos (201 31

and. after another time average with respect to the
period 2n/Q, we recover the result (8). When Q/w=1,
the term in the curly brackets equals 3,2.

To evaluate the torque acting on the dipole, we first
compute the charges (of opposite sign) at the endpoints
of the dipole, hence

___EaAl

T 2n{A1%/322
__ EAl  wsinwtcosQt—Lcoswtsin Qn
"~ 2n{AP/322 w?-0?

Then, the (instantancous) torque is given by

T=QE,Al2
2

_ Q/w
1 —(Q/w)?

sin (2wt) sin (2.(2: +

(30}

Q

| cos wt cos Qedt

. (32)

wsinwt cos Qt — Q coswt sin Qt

= — Acoswtsin
{ wi-0?
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Fig. 4 (a) and ib) Two chiral dipoles

4y

~

Fig 5 Geometry of interaction between the magnetic field and the
loop of the chiral dipole

By similarly averaging over the period 2n/w, we get

. 2n
sin ——

S w/ 2nQ
TD=— - —_
= er |'~ Ta °°s(m'+ w)

w
1 +(Q/w)? 21:9
——51 =T cos 2wt cos

2Q/w 2nQ
- l—_(—‘—)/—)—z sin 2wt sin (ZQt + T)

}. o

When Q/w<1, the term in the curly brackets is
approximately equal to

1 —cos(202) (35)

and, after another time average, we recover the result
(10) weighted by the factor Q/w € 1. When Q/w =1, the
term in the curly brackets is proportional to
[1-(8/w)]?; therefore, the average torque is zero.
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4. Mechanical Forces and Torques Exerted
on a Receiving Chiral Dipole
by an Incident Electromagnetic Wave

4.1. Linearly Polarized Incident Field

Let us consider two chiral dipoles (5] as depicted 1n
Fig. 4. We will define as right-handed the chiral dipole
“b”, while the chiral dipole “a” is defined as left-handed.
In addition, the dipoles will be defined as balanced if
the following relation exists between the length 4! of
the (electric) dipole and the are na? of the (magnetic)
dipole

2nNa?

a

wherein N is the number of turns of the loop. Under
these circumstances, the far field radiated by the chiral
dipoles is everywhere circularly polarized, and the
radiation resistance is twice as large as that of the
single electric dipole.
We examine now the case of a linearly polarized
electromagnetic field described, in frequency domain,
by

E
E=Ex, H=—-y 37
5

Al=xNna*= (36)

and incident upon the (tuned) dipoles. Each dipole will
be subject to a z-directed force which can be computed
as in Sect. 1, with the only difference being the new
radiation resistance. Hence

s .
(F)=3-4z, (38)

wherein A4 is given by (4), as usual. Equation (38)
coincides with (8).

Now, at variance with the single dipole, the current
circulating in the loop,

Eal
—— 39
4nfAl*/34 39

will interact with the incident magnetic field. thus
producing an (instantaneous) torque (see Fig. 5)

2 2 =
1=E 4No V_ [+
¢ °
, E?

= tz EC—(_U-A . (40)
Here use has been made of (36) and the upper and
lower signs refer to the right-handed and left-handed
dipoles respectively. Accordingly, the (time average)
torque is given by

sm ¢d¢

(T)sti%A @1)

which is identical to (10).
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4.2. Circularly Polarized Incident Field

We examine now the case of an incident wave cir-
cularly polanzed along the z-direction, i.c., in complex
notation,

E=E(x+1j); H=£(}-—ii). (42)
s

This wave is incident upon a balanced (tuned) chiral
dipole, either right-handed or left-handed. The open
circuit voltage induced by the electric field (along the
electric dipole) is given by E4l Similarly, the open
circuit voltage induced by the magnetic field in the
loop is given by

iN ,C:.— (—iw)=E4l, (43)

upon use of the balance condition (36). Then, exam-
tnation of Fig. 4 clearly shows that the two voltages
add for the right-handed chiral dipole, while they
cancel out for the left-handed one. Accordingly, one of
the two dipoles is “invisible™ to the incident circularly
polarized wave, and no force or torque is acting upon
it. On the contrary, the current

Eal

= Al (@4)

is induced on the other dipole. This current will
interact with the incident magnetic field chus produc-
ing an average force

(F)= 5 Az (45)
2c

equal to (8). Note that the forces due to the interaction
of the magnetic field with the current along the loop
have a zero spatial average.
Now, we compute the torque acting on the dipole. This
is produced in part by the y-component of the mag-
netic field interacung with the current along the loop.
Hence

EZ
Tl = 2 'C; A (46)
and, in part, by the y-compoaent of the electric field
interacting with the charges at the end-points of the
wire. Hence

2
T,=2§;A. (47)

Accordingly, the average total torque is given by
(T)=1% % A 48)

which is twice as large as (10).

4
H
7

Fig 6. Exaitauon of a metal sphere by a planc wave

S. A Rigorous Boundary Value Solution.
Mechanical Action oo a Metal Spbere Produced
by an Electromagnetic Pulse

We examine the case of a metal sphere excited by a
plane electromagnetic wave as depicted in Fig. 6. Fora
steady-state incident field, the total field components
on the spherical surface r=g are given by [6]

__Ecos¢ & . P, (cos 6)
B T T Vel
1 . !
H0=Z’I‘l(0)sm¢; H‘=ET’(6)COS¢'
wherein
_EE L, 2+ 1 P,(cos 6)
T,(6)= a ;( iy mnt l){[xah:"(xa)]' sin 0
_ i dP}(cos )
[xah!V(xa)]) de
(50)
_EZ . 2n+ i dP}(cos 6)
Ty(6)= — ;( N D) |[xahwa)] 8
i Pl(cos 0)

~ [xahM(xa)}’

and a prime implies the derivative operation with
respect to the argument!.

Let E(w) be the spectral distribution of the incident
field, i.e.,

E=E &(w)explixz), (s1)

wherein E, is a convenient normalization constant,
and t=a/c. Let us further introduce the following

sin@

! Note a misprint error in the expression for E, in [6).
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time-dependent functions

* = Sw)exp(—iwt)(—i)*"?

= §

Sw (o) [wthiP(wr)]

g = ’jc E(w)exp(—iwt)(—1)"*?2

2. (o [wthMwr))

(52)

].m=% _j f(nde .

Then, the transient field at the sphere surface r=a is
given by

E,=-E,cos¢ i (2n+ 1)f(t)P (cos 8)
1

_Eysing & 2n+1 P}{cos 6)
He= { z,;‘n(n+l)(f o sin@
dP}(cos 6)
+g.(t) a8 (53)
_Eqcosp & 2n+1 [ dpP! (cosG]
Ho= ==L [0
P}(cos 6)
+g"(t)W .
Transient surface density charges
00=€£' (54)

and surface density currents
Jo=—=H,, J,=H, (35)

are excited on the sphere surface. The electric field
will interact with the charges, thus producing a force
density

f,=cE3F (56)

and the magnetic field will interact with the currents,
thus producing a force density

f.=—uH+H . (57)

For the first force density we have

f,=cE3cos’or 3. .. (n+ 1)2m+ D070
1 b

P, (cos6) P_(cos6)
sin@ sin 0

(38)

This force density has a cos’¢ dependence for its
x-component; and a cos?¢sin¢@ dependence for its
y-component. Therefore, the space-average of these
two components is zero. This does not happen for the
z2-component of (58), whose ¢-dependence is of type
cos’@. Accordingly, the (space average) total force

G. Franceschetti and C. H. Papas

acting on the sphere has only a z-component given by

Fo=22 na? ¥, 5, Gne @m+ DA0T0
1 1

- { cos Bsin OP} (cos B)P} (cos 8)d6 (59)
! ¢

wherein S=E2/{.

By repeated use of recurrence and orthogonality re-
lations [7], it can be shown that the integral appearing
in (59) is different from zero only for m=n+1 and
m=n—1. Then, rearranging the terms of the series, we
get

F,=2§4na2i n(n+1)(n+2)f(0)f,. (1) . (60)
1

For the second density force we proceed similarly. The
x and y components of the (space-average) total force
acting upon the sphere are zero, and only the
z-component is different from zero. This last com-
ponent is given by
o 2n+1 2m+1
},:"‘ nn+1) mm+1)
P, PL dpP! dP}
(s T
sinfsin®  do do
t (Pl dP. Pl dP!
+U*g"+f"g"£< inf 8 " sinb dB)

F, =—‘—1ta2

-8

{U.f.. +GnGm)

) cos 8sin 840

- cos @sin Gde]. (61)

The integral which appears in (61) can be evaluated
upon repeated use of recurrence relationship between
associated Legendre polynomials and of their defining
differential equation [8]. In particular, the second
integral is different from zero only for n=m; and the
first one only for m=n+1 and m=n—1. Then, upon
rearranging the terms of the series, we get

2
F, -—z 4 IZ[n("+ )(ffnr"‘G»Gnﬂ)

2n+1
+ ot l)f"g"}' 62)

Accordingly, the (space-average) total force acting on
the spherc is given by

nn+2
F—tSana £ 20000 40,00
2n+1
T 0+ D+ 2 T |- (63)

An interesting case is that of a bandlimited signal such
that w,a<1, w, being the maximum angular fre-
quency. Then, using the series expansion

exp(ix) 2n)! 1

xhi ()= 2B (64)

n! (2ix)
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it follows that, to the lowest order in td/dt

~(—p-top N TE
E f{n=(=)""(27) TR
(o y-1gqop-1 N12 OT'E
Eyg (=(=)"121) 2 T e (65)

1 a
~ = * - -
E J (=~ ng,,(l), =t -,

where, now, E=E(t) and is the time-varying incident
field. Accordingly, at the lowest order again

= > 1 2 L] 3
F= 2541:11 2tE(t )E,-.-,z-o
2
__4na’ oS (66)
c Ot [, npe

where S(¢) is the instantaneous value of the incident
Poynting vector at z=0. Note that, at the lowest
considered order, the time average of F is equal to zero
for a sinusoidal incident field, since the sphere does not
scatte: any real power. For a Gaussian pulse

2
E(z.y=E,exp [— (_t_-;;/_zc_)_] . (67)
L
Fity= s U7 gpg2 2107 (68)

TZ

It is seen that the sphere is first pushed (t* <0) in the
sense of propagation of the incident wave; and then
pulled (t* >0).

6. Conclusions

We have considered the mechanical effects that an
electromagnetic wave can have on various types of
targets. Using nothing more than the Lorentz force,
given by F=pE +J x uH, we have found that

a) a linearly polarized wave falling on a tuned electric-
receiving dipole will exert a body foce - see (4) — on the
dipole in the direction of incidence,

b) a circularly polarized wave falling on such a dipole
will exert not only a body force but also a torque - sec
(10).

We also found that

c) for a fixed transmitting dipole surrounded by an
absorbing spherical surface of radius r, there is no
recoil force on the dipole but there is a force on the
absorbing spherical surface - see (13) - which tends to
make it implode when xr <1 and explode when xr> 1.
Moreover,

d) when the fixed transmitting antenna happens to be
a turnstile, there is a recoil torque on the antenna, and
a torque on the absorbing spherical surface - see (26),

and again there are the implosive and explosive forces
as before.

In addition, we have studied the problem of a receiving
dipole that is either moving at constant velocity or
simply rotating. We have found that

e) when the tuned dipole is in pure translational
motion, the force exerted on the dipole by the incident
signal is equal to that on the tuned dipole at rest.

f) When the dipole is only rotating, the incident signal
exerts also a torque on the spinning dipole - see (34).
For a balanced chiral dipole receiving antenna in the
field of a linearly polarized incident wave, we deduced
that

g) the body force exerted on the antenna is inde-
pendent of the handedness of the antenna - see (38j,
whereas the torque changes sign with a change of
handedness. If such an antenna is exposed to a cir-
cularly polanzed incident wave, then

h) the antenna is completely free of body force and
torque for one handedness, but not for the other - see
(45) and (48). That is, with the proper bandedness the
antenna 1s “invisible™ at the “balanced™ frequency.

Finally, the push-pull effect has been examined for the
case of a puise falling on a spherical target. It has been
found that

1) the leading term of body force excited on the sphere
by the incident pulse is proportional to ¢S/6t, provid-
ed that the effective bandwidth of the puise multiplied
by the characteristic time of the target is less than
unity.
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